Matrix metalloproteinases promote inflammation and fibrosis in asbestos-induced lung injury in mice.
نویسندگان
چکیده
Inhalation of asbestos fibers causes pulmonary inflammation and eventual pulmonary fibrosis (asbestosis). Although the underlying molecular events are poorly understood, protease/antiprotease and oxidant/antioxidant imbalances are believed to contribute to the disease. Implicated in other forms of pulmonary fibrosis, the matrix metalloproteinases (MMPs) have not been examined in asbestosis. We therefore hypothesized that MMPs play a pathogenic role in asbestosis development. Wild-type C57BL/6 mice were intratracheally instilled with 0.1 mg crocidolite asbestos, causing an inflammatory response at 1 d and a developing fibrotic response at 7, 14, and 28 d. Gelatin zymography demonstrated an increase in MMP-9 (gelatinase B) during the inflammatory phase, while MMP-2 (gelatinase A) was profoundly increased in the fibrotic phase. Immunohistochemistry revealed MMP-9 in and around bronchiolar and airspace neutrophils that were often associated with visible asbestos fibers. MMP-2 was found in fibrotic regions at 7, 14, and 28 d. No increases in RNA levels of MMP-2, MMP-9, or MMP-8 were found, but levels of MMP-7, MMP-12, and MMP-13 RNA did increase at 14 d. The MMP inhibitors, TIMP-1 and TIMP-2, were also increased at 7-28 d after asbestos exposure. To confirm the importance of MMP activity in disease progression, mice exposed to asbestos were given daily injections of the MMP inhibitor, GM6001. MMP inhibition reduced inflammation and fibrosis in asbestos-treated mice. Collectively, these data suggest that MMPs contribute to the pathogenesis of asbestosis through effects on inflammation and fibrosis development.
منابع مشابه
Beneficial effects of N-acetylcysteine on protease-antiprotease balance in attenuating bleomycin-induced pulmonary fibrosis in rats
Objective(s): The role of N-acetylcysteine (NAC) as an anti-oxidant in attenuating bleomycin-induced pulmonary fibrosis has been reported. However, its effect on parenchymal remodeling via regulating the protease-antiprotease balance is not fully defined. Therefore, the present study was designed to explore the possible role of matrix metalloproteinases (MMP), tissue i...
متن کاملRedistribution of pulmonary EC-SOD after exposure to asbestos.
Inhalation of asbestos fibers leads to interstitial lung disease (asbestosis) characterized by inflammation and fibrosis. The pathogenesis of asbestosis is not fully understood, but reactive oxygen species are thought to play a central role. Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme that protects the lung in a bleomycin-induced pulmonary fibrosis model, but its role h...
متن کاملRac2 is involved in bleomycin-induced lung inflammation leading to pulmonary fibrosis
BACKGROUND Pulmonary fibrotic diseases induce significant morbidity and mortality, for which there are limited therapeutic options available. Rac2, a ras-related guanosine triphosphatase expressed mainly in hematopoietic cells, is a crucial molecule regulating a diversity of mast cell, macrophage, and neutrophil functions. All these cell types have been implicated in the development of pulmonar...
متن کاملExtracellular matrix powder protects against bleomycin-induced pulmonary fibrosis.
Pulmonary fibrosis refers to a group of lung diseases characterized by inflammation, fibroblast proliferation, and excessive collagen deposition. Although the mechanisms underlying pulmonary fibrosis are poorly understood, current evidence suggests that epithelial injury contributes to the development of fibrosis. Regenerative medicine approaches using extracellular matrix (ECM) scaffolds have ...
متن کاملAlternative Roles of STAT3 and MAPK Signaling Pathways in the MMPs Activation and Progression of Lung Injury Induced by Cigarette Smoke Exposure in ACE2 Knockout Mice
Inflammation-mediated abnormalities in the renin-angiotensin system (RAS) and expression of matrix metalloproteinases (MMPs) are implicated in the pathogenesis of lung injury. Angiotensin converting enzyme II (ACE2), an angiotensin converting enzyme (ACE) homologue that displays antagonist effects on ACE/angiotensin II (Ang II) axis, could also play a protective role against lung diseases. Howe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of respiratory cell and molecular biology
دوره 35 3 شماره
صفحات -
تاریخ انتشار 2006